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Abstract

The topology of the embedding of the coadjoint orbits of the unitary groupU of an infinite dimen-
sional complex Hilbert spaceH, as canonically determined subsets of the spaceTs of symmetric
trace-class operators, is investigated. The spaceTs is identified with theB-space predual of the
Lie-algebraL(H)s of the Lie groupU. It is proved, that the orbits consisting of symmetric operators
with finite range are (regularly embedded) closed submanifolds ofTs. Such orbits play a role of
“generalized phase spaces” of (also nonlinear) quantum mechanics.

An alternative method of proving the regularity of the embedding is also given for the “one-
dimensional” orbit, i.e. for the projective Hilbert spaceP(H). Closeness of all the orbits lying in
Ts is also proved.
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1. Introduction

The aim of this section is a description of motivation, a formulation of the problem, and
a brief discussion of the role played in physics by mathematical objects connected with
it. The solution of the problem is presented inTheorem 2.5. Section 3contains a proof
of closeness ofall unitary coadjoint orbits lying in the spaceTs of symmetric trace-class
operators, as well as an alternative proof ofTheorem 2.5for a specific case.

Mathematical formalism of quantum mechanics (QM) is traditionally based on separable
complex Hilbert spaceH, and on closely connected objects: theW∗-algebra of bounded
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operatorsL(H), the σ(L(H),L(H)∗)-continuous (withL(H)∗ := T := L1(H) := the
trace-class operators onH) linear functionalsν onL(H) (identified withν ∈ T by ν(B) :=
Tr(νB)∀B ∈ L(H)), and the group of∗-automorphisms∗-Aut(L(H)) of L(H) (acting on
linear functionals by the transposed maps). Since each∗-automorphismα ∈ ∗-Aut(L(H))
of theW∗-algebraL(H) is inner, it is described by a unitary operator (U is the set of all
unitary elements ofL(H)) uα ∈ U : α(B) ≡ uαBu∗α (uα is determined byα up to a numerical
factor). The transposed maps are then described byν �→ u∗ανuα.

The bounded symmetric operators composingL(H)s are interpreted in QM as
“observables”, the∗-automorphisms ofL(H) are “symmetries”, and the positive elements
ρ ∈ Ts ⊂ Twith Tr(ρ) = 1 are “density matrices” describing “states” of a physical system.
Symmetries (and dynamics, as a specific one-parameter group case) of these QM systems
are described equivalently also by actions of the mentioned transposed maps leaving the set
Ts invariant. This rough picture of physically interpreted transformations extends also to a
natural nonlinear extension of QM described in[1] and extending the formalism to much
wider class of dynamical systems. The orbits of such actions are always contained in orbits
Oρ(U) := {u∗ρu : u ∈ U} of the action of the wholeU on anyρ ∈ Ts; theOρ(U)’s are
objects of our main interest here.

SinceU is a Banach Lie group, andL(H)s is (isomorphic to) its Lie algebra[3], the orbits
Oρ(U) are the coadjoint orbits ofU throughρ ∈ Ts ⊂ L(H)∗s (≡the topological dual of the
Lie algebraL(H)s).

As I have learned from a discussion with colleagues Anatol Odzijewicz and Tudor Ratiu,
there is an “innocently looking” problem connected also with coadjoint action of Lie groups,
which is far not trivial in the general case. It is the question in which way the homogeneous
spacesG/Gρ of a Lie groupGwith their natural analytic manifold structure (withGρ being
the stability subgroup ofGat the pointρ), specifically their coadjoint orbits, are included into
the topological spaces where the group acts. In more specific terms the problem is, whether
the injective inclusion is an immersion and homeomorphism of the analytic manifoldG/Gρ
onto a submanifold of the spaceT on which the groupG acts. For example, an orbitO of a
specific action ofR on the two-torusT 2 = S1×S1, given byO := {(eitω1;eitω2) : t ∈ R} ⊂
T 2 with irrational quotientω1/ω2, covers the torus densely, hence it is not a submanifold
of T 2. As it is shown in a Kirillov’s example[4] (cited and reproduced in[5, 14.1(f),
p. 449]), such a pathologically looking case is possible also in the cases of finite-dimensional
coadjoint orbits. There are also other possibilities for injectively immersed manifolds of not
being submanifolds of the “ambient” space, cf.[5, p. 126]for an illustration. The more one
could expect an occurrence of such phenomena in the case of infinite-dimensional orbits of
Banach Lie groups.

Let Oρ(U) = U/Uρ be the homogeneous space of the unitary groupU of the infinite-
dimensional Hilbert spaceH corresponding to an orbit of the actionu �→ uρu∗, u ∈ U, on
the spaceTs( ρ) of symmetric trace-class operators inL(H) (Uρ is the stability subgroup
of U at ρ, namelyUρ := {v ∈ U : vρv∗ = ρ}). In the paper[1], the topology of the orbits
Oρ(U), as well as the topology of their natural injection into the dualB-space (containing
the predualTs) were investigated. (Let us note here that a far reaching generalizations of
some of structures developed and investigated in[1] are contained in[6]. That work was also
stimulating for the here reported research.) It was proved in[1,6] (cf. [1, Proposition 2.1.5],
and also[6, Theorem 7.5, Examples 7.9 and 7.10]), that orbits trough symmetric trace-class
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operators are injectively immersed intoTs iff they are going trough operators with finite
range. There was not completed, however, the proof ofregularityof this embedding (in the
terminology of Choquet-Bruhat et al.[7]) of such “finite-range” orbits. One of the aims of
this paper is to fill this gap. Proving this inTheorem 2.5, it will be shown that the above men-
tioned “pathologies of embeddings” for the class of orbitsOρ(U) consisting of finite-range
operators cannot occur.Proposition 3.1shows that a certain types of “pathologies” are ex-
cluded also for orbits going through infinite-range trace class operators. Some additional
related facts can be found in[8].

Let us note, that the posed question of whether the orbit is also a submanifold of the
“ambient” space in which the group acts is easily and positively answered in the case of
finite-dimensional Hilbert spaceH. In that case the groupU is compact, so that the orbits
are also compact and a continuous bijection of any compact space into a Hausdorff space is
a closed mapping, hence a homeomorphism. For an infinite-dimensionalH, however, the
orbitsOρ(U) are noncompact.

2. A proof of regularity of the embedding

We shall accept here some results from[1], mainly from Proposition 2.1.5 and Theorem
2.1.19; cf. also[6] for more general versions of the needed assertions. Some of the con-
structions formulated in this paper and connected with the proof ofTheorem 2.5might be,
perhaps, also of independent interest, cf. also[8].

Let us describe first in more detail a formulation of the problem, and our strategy to
approach it. It is known[3, Proposition 37, Chapter III, Section 3]that the unitary group
U of theW∗-algebraL(H) of all bounded operators on a complex Hilbert spaceH is a
Banach Lie group, and its Lie algebra consists of all antisymmetric bounded linear operators
iL(H)s, which isB-space isomorphic toL(H)s. The adjoint representation ofU in the
B-spaceL(H)s is Ad : U→ L(L(H)s), u �→ Ad(u), with Ad(u)B := uBu∗ ∀B ∈ L(H)s.
The representation we are here mostly interested in is thecoadjoint representationof U
consisting of the transposed mappings Ad∗(u) := Ad(u−1)∗ to Ad(u−1)’s, hence acting
on continuous linear functionalsν ∈ L(H)∗s , ν : L(H)s → C, B �→ 〈ν;B〉; the mapping
Ad∗(u) : L(H)∗s → L(H)∗s is determined by〈Ad∗(u)ν;B〉 := 〈ν;Ad(u−1)B〉. The subset
of symmetricnormal linear functionals is Ad∗-invariant, and it can be identified with the
B-spaceTs ⊂ L(H)∗s of symmetric trace-class operators:ν(∈ Ts) : B �→ 〈ν;B〉 := Tr(νB);
the spaceTs is a Banach space with the trace-norm‖ν‖1 := Tr|ν|, with the absolute value
of the operatorν defined as the operator|ν| := √

ν∗ν ∈ L(H).
We are interested in comparison of two topologies introduced on the orbitsOρ(U) :=

{Ad∗(u)ρ ≡ uρu∗ : u−1 = u∗ ∈ U ⊂ L(H)} of the coadjoint representation. Let us denote
Uρ := {u ∈ U : uρ = ρu} (ρ ∈ Ts). ThenUρ is a Lie subgroup ofU (cf. [1, Lemma 2.1.2], or
[6, Proposition 6.8 and Theorem 7.5]), and the factor-spaceU/Uρ (which can be canonically
identified, as a set, withOρ(U)) endowed with the factor-topology of the analytic Banach
Lie groupU is an analytic Banach manifold[3, III.1.6, Proposition 11].

On the other side, the orbitOρ(U) is naturally a subset of the Banach spaceTs endowed
with the norm-topology given by the trace-norm‖ · ‖1. The topology induced onOρ(U)
from thisB-space topology onTs need not coincide with the analytic manifold topology of
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U/Uρ. It is known that this coincidence isnot the case for anyρ with infinite-dimensional
range, cf.[1, Proposition 2.1.5]or [6, Example 7.9 and next Remark]. The coincidence of
these two topologies means that the immersed subsetι(U/Uρ) = Oρ(U) ofTs endowed with
the topology ofU/Uρ is a submanifold ofTs, or equivalently, that the inclusion mapping
ι : U/Uρ → Ts (provided thatι is immersion) is a homeomorphism ofU/Uρ onto the
topological subspaceOρ(U) ⊂ Ts [9, 5.8.3].

We intend to prove that, for anyρ = ρ∗ ∈ F (:= the linear space of finite-rank operators
in a complex Hilbert spaceH), the topology induced on the subsetOρ(U) := {uρu∗ :
u−1 = u∗ ∈ U ⊂ L(H)} from the overlying (resp. “ambient”) Banach space of symmetric
trace-class operatorsTs is equivalent to the topology of the setOρ(U) considered as the
factor-spaceU/Uρ. If the inclusionι : U/Uρ → Oρ(U) ⊂ Ts, [u]ρ �→ ι([u]ρ) := uρu∗,
where [u]ρ := {v ∈ U : vρv∗ = uρu∗}, is an (injective) immersion, and if it were also
homeomorphism ofU/Uρ onto ι(U/Uρ) = Oρ(U), thenOρ(U) would be a submanifold of
Ts, cf. [9, 5.8.3].

Let us sketch our “strategy” of proving this claim here. It was proved in
[1, Proposition 2.1.5](cf. also[6, Corollary 7.8 and Example 7.9]) thatOρ(U) is an im-
mersed submanifold (i.e. the injective inclusionι : U/Uρ → Oρ(U) ⊂ Ts is an immersion
[9, 5.7.1]) of Ts for dim(ρ) := rank(ρ) < ∞. To obtain the wanted result, we are going
to prove that the inverse mappingι−1 : Oρ(U)→ U/Uρ is also continuous. It will be use-
ful to our technique to use the metric-space expression of continuity of mappings, i.e. the
“ε ↔ δ language”. It is useful to realize for this that the considered homogeneous spaces
U/Uρ are all (for dim(ρ) < ∞) Riemann manifolds endowed with strong Riemannian
metrics[1, Theorem 2.1.19]. Then the manifold topology is given by the corresponding
distance function[10, Proposition 4.64], hence all the considered topologies are metric
ones, i.e. the metric onU given by the operator norm‖u − v‖, the Riemannian topology
on Oρ(U) represented by a distance functiondρ(ρ′, uρ′u∗) (the distancedρ will not be
explicitly calculated here, we shall not need it), and also the topology of the spaceTs, into
whichOρ(U) is embedded, is given by the norm-distance‖ρ′ − uρ′u∗‖1. [We shall also
use the same notation for elementsρ′ ∈ Oρ(U) ⊂ Ts, and for their imagesι−1(ρ′) ≡ ρ′ ∈
U/Uρ.]

We have to prove that, for anyρ′ ∈ Oρ(U), and for an arbitraryε′ > 0 there is a
δ′ > 0 such that if there is any elementρ′′ ∈ Oρ(U) with ‖ρ′′ − ρ′‖1 < δ′, then it is
alsodρ(ρ′, ρ′′) < ε′. The projectionΠρ : U → U/Uρ, u �→ [u]ρ ≈ uρu∗ is continuous
(here [u]ρ ≈ uρu∗ means the canonical identification of the left cosets [u]ρ ⊂ U with their
realization as the pointsuρu∗ of Oρ(U)). We can use this continuity to avoid necessity of
(possibly complicated) calculation of explicit forms ofdρ (cf. Proposition 3.2). SinceΠρ is
continuous, to anyρ′ ∈ U/Uρ, and to anyε′ > 0 there is anε >0 such that if‖IH− v‖ < ε,
then alsodρ(ρ′, vρ′v∗) < ε′. So, if we could find to anyε >0, and to any givenρ′ ∈ Oρ(U)
such aδ′ > 0 that for eachρ′′ := uρ′u∗ : ‖ρ′ − ρ′′‖1 < δ

′ it is possible to finda unitary
v such that alsoρ′′ = vρ′v∗, and simultaneously‖IH − v‖ < ε, then the continuity ofι−1

in the (arbitrarily chosen) pointρ′ ∈ Oρ(U) ⊂ Ts will be proved. This will be the wanted
result.It will be proved then the continuity ofι−1 : Oρ(U) → U/Uρ on whole its domain
Oρ(U).

We shall proceed essentially in the just indicated way, but to avoid explicit calculation of
dependenceε �→ δ′(ε), we shall use also another known continuity, namely the continuous
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dependence of the spectral projectionsFj : ρ′′ �→ Fj(ρ
′′) of ρ′′ := ∑

j λjFj ∈ Oρ(U) on
theρ′′ itself, cf. Lemma 2.2.

The following lemma provides us with a ‘freedom’ in dealing with various topologies
induced on the considered orbits.

Lemma 2.1. The topologies coming from the trace-class B-spaceL1(H) (:= T(H) ⊃
Ts ⊃ FN ), from the Hilbert–Schmidt B-spaceL2(H) (:= H ⊃ Hs ⊃ Ts ⊃ FN ), as well as
from theC∗-algebra of all bounded operatorsL∞(H) := L(H) (⊃ L(H)s ⊃ Hs ⊃ Ts ⊃
FN), induced on the subset of symmetric finite-range operatorsFN with a fixed maximal
dimension N of their ranges are all equivalent.

Proof. Let N be maximal dimension of ranges of the considered operatorsA,B ∈ FN ,
A = A∗, B = B∗, hence the ranges of the operatorsA− B are of maximal dimension 2N.
The considered topologies are all metric topologies induced onFN by the corresponding
norms from the “above lying” spaces. The distances betweenA andB are correspondingly
given by‖A−B‖1 := Tr|A−B|,‖A−B‖2 :=

√
Tr|A− B|2, and‖A−B‖ =: ‖A−B‖∞ =

the maximal eigenvalue of|A−B|, where|A−B| denotes the absolute value of the operator
A−B, |A−B| := √

(A− B)∗(A− B). Generally, it is‖C‖∞ ≡ ‖C‖ ≤ ‖C‖2 ≤ ‖C‖1 for
any trace-class operatorC. Conversely, also due to the mentioned inequalities, one clearly
has‖A− B‖2 ≤ ‖A− B‖1 ≤ 2N‖A− B‖∞ ≤ 2N‖A− B‖2 for A,B ∈ FN . This shows
that all the three metric topologies are onFN ⊂ L(H) mutually equivalent. �

We shall need a rather indirect, but a quite “faithful” expression for “proximity” of
finite-range operators on the same orbit considered as a subset of theB-spaceTs, which
would be more difficult to express directly with a help of the usual norms of their differences.
To this end we shall need the following lemma.

Lemma 2.2. Let us consider the subsetBσ of bounded operatorsL(H) consisting of all
bounded symmetric operatorsρ ∈ L(H) with a given purely discrete finite spectrumσ :=
{λ0, λ1, λ2, . . . , λn} ⊂ C. Their spectral projectionsFj ≡ Fj(ρ) (j = 0,1,2, . . . , n) are
continuous functions ofρ ∈ Bσ :

ρ :=
n∑
j=0

λj · Fj,

in the operator norm topology ofL(H).

Proof. The spectral projections of any symmetric operatorρare uniquely determined by that
operator, hence for a given discrete spectrum (e.g.ρ ∈ Bσ) the projections corresponding
to fixed spectral values are uniquely determined functions of the operatorsρ ∈ Bσ . By
the use of a spectral functional calculus one can choose some functionspj : R → R such
that pj(λk) ≡ δjk. Thenpj(ρ) = Fj := Fj(ρ)∀j. Let us choose for the functionspj
polynomials; we define for any complexz ∈ C

pj(z) :=
n∏

k(�=j)=0

z− λk
λj − λk , (2.1)
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what givespj(ρ) = Fj(ρ), and the continuity ofρ �→ Fj(ρ) on (any subset of)Bσ is
explicitly seen. �

These two lemmas lead immediately to the following corollary.

Corollary 2.3. The spectral projectionsFj of finite-range operatorsρ ∈ Bσ ∩ FN are
(on the setBσ ∩ FN ) continuous functionsρ �→ Fj(ρ) of these operators in any of the
considered(i.e. trace, Hilbert–Schmidt, andL(H)) topologies(taken independently on the
domain-, or range-sides).

We shall use in the following text also the Dirac notation for vectors and operators in a
complex Hilbert space:|x〉 := x ∈ H will denote a vector,〈x|y〉 is the scalar product of
such vectors (linear in thesecondfactor), and|x〉〈y| the operator of one-dimensional range
such that|x〉〈y| :

∑
j cj|zj〉 �→ |x〉〈y| ·∑j cj|zj〉 := (∑j cj〈y|zj〉)|x〉.

The constructions needed in the proof of the main theorem use also a more detailed
description of consequences of “proximity” of two projections described in the following
lemma.

Lemma 2.4. Let E, F be two orthogonal projections of finite-dimensional ranges of equal
dimensionsN := dimE = dimF := Tr(E) in an infinite-dimensional Hilbert spaceH.

Assume thatE ∧ F = 0, i.e. the subspacesE := EH andF := FH have no nonzero
common vectors. Let us also denoteE ∨ F := E + F = (E ∨ F)H the 2N-dimensional
linear hull inH of E ∪ F. Let

Tr[(E − F)2] ≡ ‖E − F‖2
2 < 2. (2.2)

Then:

(i) For any one-dimensional projections given by normalized vectorse ∈ E, f ∈ F :
|e〉〈e| =: Pe ≤ E (i.e., Pe · E = Pe), and |f 〉〈f | =: Pf ≤ F , it is Pe · F �= 0, and
Pf · E �= 0.

(ii) There exists an orthonormal basis{ej : j = 1,2, . . . , N := dimE} ⊂ H in E,
i.e.

∑
j Pej = E, such that one can find an orthonormal basis ofF : {fj : j =

1,2, . . . , N} ⊂ H (i.e.
∑
j Pfj = F ), satisfying the relations

Pfj (E − Pej ) = 0, Pej (F − Pfj ) = 0 ∀j. (2.3)

(iii) Point (ii) means that these orthonormal systems(ej : j = 1,2, . . . , N}, and{fj : j =
1,2, . . . , N}, decomposing E and F, are in a certain strong sense mutually“affiliated”:

F |ej〉 = |fj〉〈fj|ej〉, ∀j = 1,2, . . . , N, 0 �= 〈fj|ej〉 ∈ C,

〈ej|ej〉 ≡ 1≡ 〈fj|fj〉, (2.4)

i.e. from a specific orthonormal‘decomposition’ {ej : j = 1,2, . . . , N} of E the
orthonormal system{fj : j = 1,2, . . . , N} ‘decomposing’ F and satisfying(2.3) is
obtained,uniquely up to nonzero numerical factors,simply by element-wise orthogonal
projections ofej ’s ontoF := FH.
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(iv) The above mentioned specific orthonormal basis{ej : j = 1,2, . . . , N} determines
also (up to ‘phase factors’)an orthonormal basis{e⊥j : j = 1,2, . . . , N} of E⊥ :=
[(E ∨ F)− E]H = (E ∨ F)" E, such thatfj = αjej + βje⊥j , αj · βj �= 0 (∀j).

Proof.

(i) Let there be a projectionPe ≤ E such thatPeF = 0. Let e1 := e, and let{ej : j =
1,2, . . . , N} be an orthonormal system decomposingE, E = ∑N

j=1Pej . Then

Tr(EF) = Tr[(E − Pe)F ] =
N∑
j=2

Tr(PejF) ≤ N − 1, (2.5)

since always it is Tr(PxF) ≤ 1∀x ∈ H. The estimate(2.5) would be then in contra-
diction with the assumption(2.2), since Tr[(E − F)2] = 2(N − Tr(EF)). Due to the
symmetry of the assumed conditions with respect to the exchangeE↔ F , one obtains
alsoPfE �= 0. This implies validity of (i).

(ii) We have to prove existence of the bases{ej} := {ej : j = 1,2, . . . , N := dimE},
and{fj : j = 1,2, . . . , N = dimF } of E, resp.F satisfying(2.3).

This means to find an orthonormal basis{ej : j = 1,2, . . . , N} of E such that its ele-
ment-wise projections ontoFare proportional tofj ’s, cf. (2.4). This also means that for
such a basis{ej} ⊂ E the projectionsF |ej〉 ∈ F are nonzero and mutually orthogonal.

Statement (i) ensures that all the projectionsF |e〉 of all nonzero vectorse ∈ E are
nonzero, i.e. the restrictionEFE ∈ L(E) of the projectorF to the subspaceE ⊂ H
has trivial kernel: KerE(EFE) = 0. This implies that the bounded operatorEFE =
(FE)∗FE onE is strictly positive and there is an orthonormal basis{ej} of E in which
the matrix〈ej|EFE|ek〉 = 〈ej|F |ek〉 is diagonal, with strictly positive diagonal ele-
ments‖Fej‖2.

Let us define then, e.g.,fj := ‖Fej‖−1 ·Fej, j = 1,2, . . . , N; these elements form
the wanted basis ofF, resp. specify the decomposition of the projectorF satisfying
together with the just found basis{ej} the relations(2.3). This proves (ii).

(iii) That statement is just a rephrasing of (ii); the uniqueness also is seen from(2.3).
(iv) Since eachfj ∈ F constructed as above is orthogonal to all theek (k �= j), and

〈fj|ej〉 �= 0, but it is alsoE⊥fj �= 0 (sincefj /∈ E), with E⊥ := E ∨ F − E, fj is
expressible in the form

fj := αjej + βje⊥j ∀j, (2.6)

wheree⊥j ∈ E⊥ := E⊥H is some normalized vector determined byfj up to a ‘phase

factor’, e.g.e⊥j := ‖E⊥fj‖−1E⊥fj.

We also see that allαj · βj �= 0, since allfj /∈ E, but alsofj /∈ E⊥.
The orthogonality between the vectorsfj ’s: 〈fj|fk〉 ≡ δjk implies also the orthogonality

relations fore⊥j ’s: 〈e⊥j |e⊥k 〉 = δjk. �

We are prepared now to prove the regularity of embeddings intoTs of unitary orbits
through finite-range symmetric operators.
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Theorem 2.5. Let 0 �= ρ = ρ∗ ∈ F (:= the set of all finite-range operators onH),
Oρ(U) := {uρu∗ : u ∈ U} ⊂ Ts. The unitary orbitOρ(U) is a regularly embedded
[7, p. 550]submanifold of the Banach spaceTs of symmetric trace-class operators endowed
with its trace norm, i.e. the injectionι : U/Uρ → Oρ(U) ⊂ Ts, [u]ρ �→ uρu∗ ∈ Ts is a
homeomorphism.

Proof. The mappingΠρ : U→ U/Uρ, u �→ [u]ρ(≈ uρu∗) ∈ U/Uρ is an analytic submer-
sion[3, Section III.1.6 and Proposition 11], and the inclusionι : U/Uρ → Ts is an injective
immersion (cf.[1, Proposition 2.1.5]or also[6, Examples 7.9 and 7.10]in a more general
setting; also formulations and proofs of other statements cited here from Bóna[1] could
be found also in[6] in some modified and/or generalized forms), hence the composition
ι ◦ Πρ : U → Ts is continuous. We want to prove, that the inverse (identity) mapping
ι−1 : Oρ(U)(⊂ Ts)→ U/Uρ is also continuous, if the domainOρ(U) of ι−1 is taken in the
relative topology of the corresponding “ambient” spaceTs ⊂ L1(H). It suffices to prove
the wanted continuity in each pointρ of the orbitOρ(U).

Our strategy (sketched in the beginning of this section) is as follows. Let us choose any
ρ ∈ Oρ(U) ⊂ Ts, and let its (identical) copy in the topological spaceU/Uρ be denoted by
ι−1(ρ). We shall show that to anyε′ > 0 there is aδ′ > 0 such that if‖ρ − uρu∗‖1 < δ

′
for someu ∈ U, then alsodρ(ι−1(ρ), ι−1(uρu∗)) < ε′, what is the elementary definition of
continuity of the mappingι−1 from Oρ(U) (with the induced topology fromTs) onto the
analytic manifoldU/Uρ (≡ Oρ(U), as a set) in a pointρ. This will be shown in two steps,
i.e. by

(i) using the continuity of the projectionΠρ : U → Oρ(U), u �→ uρu∗ for a choice of
ε>0 (for the givenε′ > 0) such, that if‖v−IH‖ <∈ for v εU, then alsodρ(ι−1(ρ), ι−1

(vρv∗)) < ε′, and
(ii) showing that there exists, to thisε>0, a δ′ > 0 such, that if there is some element

ρ′ = uρu∗ ∈ Oρ(U) in theδ′-neighborhood ofρ in the spaceTs : ‖ρ − uρu∗‖1 < δ
′,

thenit is possible to find(to each suchu separately, without any additional requirements
to the mappingu �→ v ≡ v(u), or to the mappingρ′ �→ v(ρ′) ≡ v) a unitaryv ∈ U :
‖v− IH‖ < ε, such thatvρv∗ = uρu∗.

The proof will be direct:A construction of a unitaryv : ‖v − IH‖ < ε for any given
ρ′ = uρu∗ lying “sufficiently close” toρ in Ts (i.e.‖ρ − uρu∗‖1 < δ

′), such that it is also
ρ′ = vρv∗.

Let us writeρ = ∑n
j=1 λjEj, 0 < n < ∞, whereλj �= λk for j �= k, Ej are the

orthogonal projections of the spectral measure ofρ = ρ∗, 0< dimEj := Tr(Ej) =: Nj <
∞ (∀j �= 0),E0 := IH −

∑n
j=1Ej =: IH − E, λ0 := 0,

∑n
j=1Nj =: N. Let us denote

Fj := uEju∗ (∀j), henceρ′ := uρu∗ = ∑
j λjFj, and also letF := ∑n

j=1Fj.
It is clear that the nonnegative numbersNj − Tr(EjFj(ρ′)) andN − Tr(EF(ρ′)) are

all continuous functions ofρ′ and forρ′ = ρ they all are zero. This can be seen, e.g. by
representing the projection operatorsFj ≡ Fj(ρ

′) by polynomialspj of the operatorsρ′,
as it was done inLemma 2.2, cf. alsoCorollary 2.3.

These considerations imply that, for any given 0< δ◦ < 1, 0< δ◦j < 1 (j = 1,2, . . . , n),
for all sufficiently smallδ′ > 0, and for all suchρ′ = uρu∗ that‖ρ − uρu∗‖1 < δ′, one
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obtains

0 ≤ Nj − Tr(EjFj(ρ
′)) =: δj < δ

◦
j < 1, j = 1,2, . . . , n,

0 ≤ N − Tr(EF(ρ′)) =: δ < δ◦ < 1, (2.7)

whereδ, δj (j = 1,2, . . . , n) can be chosen arbitrarily small positive numbers (i.e. they can
be bounded from above by arbitrarily small positive upper boundsδ◦, δ◦j (j = 1,2, . . . , n)
determining the choice of the mentionedδ′ > 0, what is possible due to the continuous
dependence onρ′ of the expressions entering into(2.7)).

Let us choose now 0< ε < 1, and assume that the above mentionedδ′ is such that for
any of the consideredρ′ it is

δ ≤
n∑
j=1

δj <
ε2

4
, (2.8)

where the first inequality is a consequence of the definitions(2.7). Let us note that we need
not here any explicit expression for the dependenceε �→ δ′ ≡ δ′(ε); it could be ‘in principle’
obtained, however, from explicit formulas for the functionsρ′ �→ Fj(ρ

′), e.g. from those
given in the proof ofLemma 2.2.

We shall construct now, for anyρ′ = uρu∗ with ‖ρ′ − ρ‖1 < δ
′, such a unitaryv ∈ U,

thatvρv∗ = uρu∗, and simultaneously‖v− IH‖ < ε.
Let us denoteQj := Ej∧Fj,E′j := Ej−Qj,F ′j := Fj−Qj,Q := E∧F ,E′ := E−Q,

F ′ := F −Q,E′⊥ := (E′ ∨F ′)−E′ = E∨F −E, F ′⊥ := (E′ ∨F ′)−F ′ = E∨F −F ,
N ′
j := dimEj−dimQj = dimE′j = dimF ′j,N

′ := dimE−dimQ = dimE′ = dimF ′ =
dimE′⊥ = dimF ′⊥. Observe that(E−F)2 = [(E∨F−E)−(E∨F−F)]2 = (E′⊥−F ′⊥)2.
Also it is Tr(EF) = Tr(E′F ′ +Q) = Tr(E′F ′)+N −N ′, and dim(E ∨ F) = N +N ′. So
that we obtain

Tr[(E − F)2] = 2[N − Tr(EF)] = Tr[(E′⊥ − F ′⊥)2] = 2[N ′ − Tr(E′⊥F ′⊥)]. (2.9)

Now we can applyLemma 2.4separately to each of the couples of projections

(E′j;F ′j), j = 1,2, . . . , n, (E′⊥;F ′⊥), (2.10)

and construct the orthonormal systems{e(j)k : k = 1,2, . . . , N ′
j} forming the convenient

bases of everyE′j := E′jH (j = 1,2, . . . , n), and also the basis{e⊥k : k = 1,2, . . . , N ′}
of E′⊥ := E′⊥H, such that their respective orthogonal projections onto the spacesF′j :=
F ′jH (j = 1,2, . . . , n), andF′⊥ := F ′⊥H, corresponding to the second projection in the

considered pair of(2.10), are the orthogonal (and afterwards normalized) bases{f (j)k : k =
1,2, . . . , N ′

j} of F′j (j = 1,2, . . . , n), and the orthonormal basis{f⊥k : k = 1,2, . . . , N ′}
of F′⊥. Let us choose any orthonormal bases{e(j)k ≡ f (j)k : k = N ′

j + 1, . . . , Nj} of all the
subspacesQj := QjH, j = 1,2, . . . , n. We have obtained in this way two orthonormal

systems{e(j)k , e⊥i : k = 1,2, . . . , Nj, j = 1,2, . . . , n, i = 1,2, . . . , N ′}, and{f (j)k , f⊥i :
k = 1,2, . . . , Nj, j = 1,2, . . . , n, i = 1,2, . . . , N ′}, each forming a basis of the subspace
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E∨F := (E∨F)H. Remember also the “cross-orthogonality” of the mutually “affiliated”
orthonormal systems:

〈f (j)k |e(j)l 〉 = 0, (j = 1,2, . . . , n), 〈f⊥k |e⊥l 〉 = 0; for l �= k ∀k, l. (2.11)

Let also the arbitrary phase factors at the allf ’s entering into the orthonormal sets be
chosen so that for all possible values of the indices it is

〈f⊥l |e⊥l 〉 > 0, 〈f (j)k |e(j)k 〉 > 0. (2.12)

Now we shall define the wanted unitaryv. Let the restriction ofv to H " (E ∨ F) :=
(E ∨ F)⊥ be the identity (i.e.v$H"(E∨F) := IH"(E∨F)), and its restriction toE ∨ F is
defined as the linear transformation between the constructed orthonormal systems forming
two bases inE ∨ F specified by

ve(j)k := f (j)k , ve⊥i := f⊥i ; ∀i, j, k. (2.13)

It is clear from this definition ofv, esp. from(2.13)that
∑n
j=1 λjFj = v(

∑n
j=1 λjEj)v

∗,
i.e.ρ′ = vρv∗. Let us show next that‖v− IH‖ < ε. Since(v− IH)$H"(E∨F) = 0, we shall
estimate the Hilbert–Schmidt norm of(v − IH) in the subspaceE ∨ F. Let Tr′(C) be the
trace of the restriction ofC ∈ L(H) to E ∨ F. We obtain with a help of(2.12):

‖v− IH‖2
2= Tr′(2IH − v− v∗)

= 2(N +N ′)− 2
n∑
j=1

Nj∑
k=1

〈f (j)k |e(j)k 〉 − 2
N ′∑
j=1

〈f⊥j |e⊥j 〉

= 2
n∑
j=1


Nj −

Nj∑
k=1

〈f (j)k |e(j)k 〉

+ 2


N ′ −

N ′∑
j=1

〈f⊥j |e⊥j 〉



≤ 2
n∑
j=1


Nj −

Nj∑
k=1

|〈f (j)k |e(j)k 〉|2

+ 2


N ′ −

N ′∑
j=1

|〈f⊥j |e⊥j 〉|2



= 2
n∑
j=1

[Nj − Tr(EjFj)] + 2[N ′ − Tr(E′⊥F ′⊥)]

= 2
n∑
j=1

[Nj − Tr(EjFj)] + 2[N − Tr(EF)], (2.14)

where we have used again the orthogonality properties(2.11) of the vectors inside each
“block” corresponding toEj, j = 1,2, . . . , n, as well as toE′⊥ :

∑n
j=1Ej+E′⊥ = E∨F ;

it was also used the fact that|〈f |e〉|2 ≤ |〈f |e〉| for any normalized vectorse, f ∈ H, as
well as the relation(2.9).

Now we shall use the definitions(2.7), and the assumption(2.8). We obtain

‖v− IH‖2 ≤ ‖v− IH‖2
2 ≤ 2

n∑
j=1

δj + 2δ ≤ 4
n∑
j=1

δj < ε
2, (2.15)



266 P. Bóna / Journal of Geometry and Physics 51 (2004) 256–268

what is the desired result. �

Hence, each orbit of the coadjoint action ofU going through density matricesρ with only
finite number of different eigenvalues is a submanifold ofTs. There is an open neighborhood
of any pointν of U/Uρ which coincides with the intersection of the embeddedOρ(U) into
Ts with an open neighborhood of the pointν in Ts.

Another possibility of proving this theorem is indicated in the next section, where such
a proof for the specific case ofOρ(U) := P(H) is given.

3. Some other related results

To prove the promised closeness of the unitary coadjoint orbit going through any symmet-
ric trace-class operator, we shall use an encoding of the spectral invariants (i.e. the spectra,
and their multiplicities) of these operators into finite positive measures onR.

Proposition 3.1. The unitary orbitsOρ(U) (for anyρ ∈ Ts) are closed subsets ofTs.

Proof. Let us take now the smooth (although differentiability will not be exploited here)
numerical functionsan : ρ �→ an(ρ) := Tr(ρn+2) determined for all symmetric trace-class
operatorsρ ∈ Ts. The numbersan(ν) are constant onOρ(U) : an(uρu∗) ≡ an(ρ)∀u ∈ U,
ρ ∈ Ts. It is claimed that fixing the infinite sequence{an(ρ), n = 0,1,2, . . . } of real
numbers one can determine the unitary orbitOρ(U) ⊂ Ts uniquely. This can be seen as
follows: the orbit is determined by the spectral invariants of anyν ∈ Oρ(U), i.e. by its
nonzero eigenvalues and their (finite) multiplicities. These might be, however, determined
by a measureµρ on R, namely the (not normalized) measure given by the characteristic
functiont(∈ R) �→ Tr(ρ2 eitρ), the moments of which are exactly the numbersan(ρ). That
measure expressed by the nonzero eigenvaluesλj of ρ, and their multiplicitiesmj, has the
form

µρ =
∑
j

λ2
j ·mj · δλj , (3.1)

whereδλ is the Dirac probabilistic measure concentrated in the pointλ. It is clear that this
measureµρ determines the orbit uniquely. The uniqueness of the solution of the Hamburger
problem of moments (see[11, Theorem X.4, and Example 4 in Chapter X.6]) for the
moments given by the sequence{an(ρ), n = 0,1,2, . . . } proves that the measureµρ is in
turn determined by the sequence{an(ρ)} uniquely.

Since the functionsρ �→ an(ρ)are continuous in the trace-norm topology, the intersection
of the (closed) inverse imagesa−1

n [an(ρ)] (n ∈ Z+) is

Oρ(U) =
∞⋂
n=0

{ν ∈ Ts : an(ν) = an(ρ)}, (3.2)

what is a closed subset ofTs in this topology. �
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Next will be given an independent way of provingTheorem 2.5, but only for a specific
case of the orbitOρ(U) with ρ = Px, i.e. for the projective Hilbert spaceP(H). A use
of that method for other orbitsOρ(U) would need calculation of the distance functions
dρ(uρu

∗, vρv∗) on the Riemannian manifoldsOρ(U) for a generalρ of finite-range; for
ρ ∈ Ts with infinite range the claim ofTheorem 2.5is false (cf.[1]).

Proposition 3.2. The unitary orbitOρ(U) going through a one-dimensional projection
ρ := Px (0 �= x ∈ H) is a submanifold of(i.e. it is regularly embedded into) the spaceTs
of symmetric trace-class operators.

Proof. It is known that the Riemannian distance function onP(H) is

d(Px, Py) =
√

2 arccos
√

Tr(PxPy). (3.3)

(The derivation of the distanced(Px, Py) is easy after accepting the (plausible looking) as-
sumption that any geodesic is contained in the submanifold ofP(H) homeomorphic to a real
two-dimensional sphere representing the projective Hilbert space of the two-dimensional
complex subspace ofH spanned by{x, y}. The nontrivial part of the proof consists in
justification of this assumption[12].)

On the other hand, the distance between the same projections in the “ambient space”Ts
is

Tr|Px − Py| = 2[1− Tr(PxPy)]
1/2, (3.4)

what is easily obtained as the sum|λ1| + |λ2| of absolute values of the two nonzero real
eigenvalues (ifPx �= Py) of Px − Py. Since Tr(Px − Py) = λ1 + λ2 = 0, one has
λ1 = −λ2 =: λ > 0. Because 2λ2 = Tr[(Px − Py)2] = 2[1− Tr(PxPy)], one obtains
λ = √

1− Tr(PxPy), hence the result(3.4). We see that these two metrics are mutually
equivalent.

This implies that the convergence of some sequence{Pyn : n ∈ Z+} of points of this
orbit to a chosen pointPx ∈ OPx(U) in the spaceTs means also its convergenceon the
homogeneous spaceU/UPx , what gives the wanted continuity of the inverseι−1 of the
injective immersion (it was proved earlier in[1] that ι is an immersion)ι : U/UPx →
OPx(U) = P(H) ⊂ Ts (the last setP(H) is taken in the relative topology ofTs). This means
that the injectionι is a homeomorphism, henceP(H) is a submanifold (cf.[9]) of Ts. �
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